Preliminary

650 V GaN FET in DFN 8x8

Description

The GPT65Z3YMR 650 V, 245 mΩ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies-offering superior reliability and performance.

The GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Ordering Information

Dort Number	Dookogo	Package	
Fait Number	гаскауе	Configuration	
GPT65Z3YMR	DFN8080	Source	

GPT65Z3YMR DFN 8x8

Cascode Device Structure

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Enhanced inrush current capability Very low QRR
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging

Benefits

- AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Achieves increased efficiency in both hard- and soft-switched circuits
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Consumer
- Power adapters
- Low power SMPS
- Lighting

GPT65Z3YMR		
V _{DSS}	650 V	
R _{DS(on)}	245 mΩ	
Q _{RR,} typ	40 nC	
Q _{G,} typ	22 nC	

Preliminary

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)

Symbol	Parameter		Limited Value	Unit		
V _{DSS}	Drain to Source Voltage		650	V		
V _(TR) DSS	Transient Drain to Source Voltage ^(a)		Transient Drain to Source Voltage ^(a)		800	V
V _{GSS}	Gate to Source Voltage		±20	V		
PD	Maximum Power Dissipation @T _c = 25°C		38	W		
lo	Continuous Drain Current	T _C = 25°C	9	А		
		T _C = 100°C	6	А		
Idm	Pulsed Drain Current Pulse Width = 10 µs		31	А		
Tc		Case	-55 to +150	°C		
TJ	Operating temperature	Junction	-55 to +150	°C		
Ts	Storage Temperature		-55 to +150	°C		
Tsold	Soldering Peak Temperature ^(b)		260	°C		

Notes:

a. In off-state, spike duty cycle D<0.01, spike duration <20µs

b. Relow MSL3

Primary Switch Voltage Stress (264 VAC)

THERMAL CHARACTERISTICS

Symbol	Parameter	Typical	Units
Rejc	Thermal Resistance, Junction-to-Case	3.3	°C/W
R _{θJA}	R _{0JA} Thermal Resistance, Junction-to-Ambient ^(c)		°C/W

Notes:

c. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6 cm² copper area and 70 µm thickness)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Forward	Forward Device Characteristics						
V(BL)DSS	Maximum Drain to Source Voltage	V _{GS} = 0 V	650			V	
V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = 500 μ A	1	1.6	2.5	V	
	Drain to Source On Resistance	V _{GS} = 8 V, I _D = 4 A		245	300	mΩ	
R _{DS(on)} eff		V _{GS} = 8 V, I _D = 4 A, T _J = 150°C		500			
	Drain to Source Leakage Current	V _{GS} = 0 V, V _{DS} = 650 V		10	20		
I _{DSS}		V _{GS} = 0 V, V _{DS} = 650 V, T _J = 150°C		50		μA	
	Gate to Source Forward Leakage Current	V _{GS} = 20 V			150	_	
I _{GSS}	Gate to Source Reverse Leakage Current	V _{GS} = -20 V			-150	nA	
Ciss	Input Capacitance	V _{GS} = 0 V.		500		pF	
Coss	Output Capacitance	V _{DS} = 650 V,		20		pF	
C _{RSS}	Reverse Transfer Capacitance	f=1 MHz		2		pF	
C _{o(er)}	Output Capacitance, Energy Related	V _{GS} = 0 V,		25		pF	
C _{o(tr)}	Output Capacitance, Time Related	V _{DS} = 0 V~650 V		45		pF	
Q _G	Total Gate Charge	V _{GS} = 0 V~12 V,		22			
Q _{GS}	Gate to Source Charge	V _{DS} = 400 V,		3		nC	
Q _{GD}	Gate to Drain Charge	I _D =5.5 A		3.5			
Qoss	Output Charge	V _{GS} = 0 V, V _{DS} = 0 V~650 V		32		nC	
t _{D(on)}	Turn-on Delay	V _{GS} = 0 V~12 V,		20			
t _R	Rise Time	V _{DS} = 400 V,		7			
t _{D(off)}	Turn-off Delay	I _D = 3 A ,		80		ns	
t⊧	Fall Time	R _g = 30 Ω		6			
Reverse Device Characteristics							
V _{SD}	Reverse Voltage	V _{GS} = 0 V, I _S = 5 A		1.5		V	
		V _{GS} = 0 V, I _S = 2 A		1.0		v	
t _{RR}	Reverse Recovery Time	Is = 3 A, V _{DS} = 400 V,		12		ns	
Q _{RR}	Reverse Recovery Charge	di/dt = 1000 A/µs		40		nC	

Preliminary

LAYOUT GUIDELINES

The layout of GaN FETs is very important for performance and EMI due to the GaN FETs are normally operated under high voltage and high current. Figure 22 and Figure 23 show an example of a good power layout loop:

POWER-LOOP INDUCTANCE

The GaN FET has operated at a high transient current (di/dt) state. Therefore, the ringing, EMI, and voltage stress on GaN FET could be reduced by minimizing the inductance of the loop.

- 1. GND with a large area copper plane provides a low inductance ground for the GaN FET (Q1).
- 2. The power device GaN FET (Q1), diode (D3), and transformer (T1) are placed as close as possible to reduce the inductance.
- The power device GaN FET (Q1) and resistor (R3) are placed as close as possible to reduce inductance and avoid abnormal switching.
- 4. Resistor (R3) and decoupling capacitor (C1) are placed as close as possible to minimize the current path and reduce the inductance.

SWITCHING NODE CAPACITANCE

GaN devices have very low switching losses due to its low output capacitance and fast switching with high transient voltage (dv/dt). Therefore, additional capacitance on the output node should be minimized.

- 1. Shrinking the area of copper reduces the extra capacitance of the switching node.
- 2. Switching Node Trace should not overlap with Power plane and GND plane.
- 3. The copper plane of the Switching Node is not used for heat dissipation of the circuit board.

Preliminary

TYPICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

Figure 1. Typical Output Characteristics $T_J = 25^{\circ}C$

Figure 3. Typical Transfer Characteristics V_{DS} = 10 V, parameter: T_J

Figure 2. Typical Output Characteristics $T_J = 150^{\circ}C$ Parameter: V_{GS}

Figure 4. Normalized On-resistance

Figure 6. Typical Coss Stored Energy

Preliminary

Figure 9. Forward Characteristics of Rev. Diode

Figure 11. Safe Operating Area T_c = 25°C (calculated based on thermal limit)

Figure 8. Typical Gate Charge

I_{DS} = 5.5 A, V_{DS} = 400 V

Figure 10. Drain-Source Breakdown Voltage

Figure 12. Safe Operating Area $T_c = 80^{\circ}C$ (calculated based on thermal limit)

Preliminary

Figure 13. Power Dissipation

Figure 14. Transient Thermal Resistance

Preliminary

TEST CIRCUITS AND WAVEFORMS

Figure 15. Switching Time Test Circuit

Figure 17. Diode Characteristics Test Circuit

Figure 19. Dynamic RDS(ON)eff Test Circuit

Figure 16. Switching Time Waveform

Figure 18. Diode Recovery Waveform

Preliminary

TYPICAL APPLICATION

Figure 21. Typical Application Schematic

Figure 22. Top Layer for FR4 1.6mm

Figure 23. Bottom Layer for FR4 1.6mm

LAYOUT EXAMPLE

Preliminary

PACKAGE OUTLINE

DFN 8x8 PACKAGE

OVMDOL	Dimensions in mm			
STMBOL	Min	Nom	Мах	
A1	0.850	0.900	0.950	
A2	0.185	0.203	0.230	
D	7.000	8.000	9.000	
E	7.950	8.000	8.050	
D1	7.050	7.200	7.350	
E1	4.450	4.600	4.750	
К1	0.375	0.400	0.425	
K2	2.575	2.600	2.625	
B1	2.250	2.300	2.350	
B2	0.375	0.400	0.425	
L1	0.700	0.800	0.900	
L2	0.075	0.100	0.125	

REVISION HISTORY

Version	Date	Changes
1.0	2022.4.7	Preliminary datasheet.
2.0	2022.5.20	Update test circuits.
3.0	2022.9.30	Added application note on page 8 and page 9.
3.1	2022.10.24	Update figure 21 on page 9 and typesetting.